My Project
Loading...
Searching...
No Matches
Data Structures | Macros | Functions | Variables
simpleideals.h File Reference
#include "polys/monomials/ring.h"
#include "polys/matpol.h"

Go to the source code of this file.

Data Structures

struct  const_ideal
 The following sip_sideal structure has many different uses throughout Singular. Basic use-cases for it are: More...
 
struct  const_map
 
struct  ideal_list
 

Macros

#define IDELEMS(i)   ((i)->ncols)
 
#define id_Init(s, r, R)   idInit(s,r)
 
#define id_Elem(F, R)   idElem(F)
 
#define id_Test(A, lR)   id_DBTest(A, PDEBUG, __FILE__,__LINE__, lR, lR)
 
#define id_LmTest(A, lR)   id_DBLmTest(A, PDEBUG, __FILE__,__LINE__, lR)
 
#define id_Print(id, lR, tR)   idShow(id, lR, tR)
 

Functions

ideal idInit (int size, int rank=1)
 creates an ideal / module
 
void id_Delete (ideal *h, ring r)
 deletes an ideal/module/matrix
 
void id_Delete0 (ideal *h, ring r)
 
void id_ShallowDelete (ideal *h, ring r)
 Shallowdeletes an ideal/matrix.
 
void idSkipZeroes (ideal ide)
 gives an ideal/module the minimal possible size
 
int idSkipZeroes0 (ideal ide)
 
static int idElem (const ideal F)
 number of non-zero polys in F
 
void id_Normalize (ideal id, const ring r)
 normialize all polys in id
 
int id_MinDegW (ideal M, intvec *w, const ring r)
 
void id_DBTest (ideal h1, int level, const char *f, const int l, const ring lR, const ring tR)
 Internal verification for ideals/modules and dense matrices!
 
void id_DBLmTest (ideal h1, int level, const char *f, const int l, const ring r)
 Internal verification for ideals/modules and dense matrices!
 
ideal id_Copy (ideal h1, const ring r)
 copy an ideal
 
ideal id_SimpleAdd (ideal h1, ideal h2, const ring r)
 concat the lists h1 and h2 without zeros
 
ideal id_Add (ideal h1, ideal h2, const ring r)
 h1 + h2
 
ideal id_Power (ideal given, int exp, const ring r)
 
BOOLEAN idIs0 (ideal h)
 returns true if h is the zero ideal
 
BOOLEAN id_IsModule (ideal A, const ring src)
 
long id_RankFreeModule (ideal m, ring lmRing, ring tailRing)
 return the maximal component number found in any polynomial in s
 
static long id_RankFreeModule (ideal m, ring r)
 
ideal id_FreeModule (int i, const ring r)
 the free module of rank i
 
int id_PosConstant (ideal id, const ring r)
 index of generator with leading term in ground ring (if any); otherwise -1
 
ideal id_Head (ideal h, const ring r)
 returns the ideals of initial terms
 
ideal id_MaxIdeal (const ring r)
 initialise the maximal ideal (at 0)
 
ideal id_MaxIdeal (int deg, const ring r)
 
ideal id_CopyFirstK (const ideal ide, const int k, const ring r)
 copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (Note that the copied entries may be zero.)
 
void id_DelMultiples (ideal id, const ring r)
 ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
 
void id_Norm (ideal id, const ring r)
 ideal id = (id[i]), result is leadcoeff(id[i]) = 1
 
void id_DelEquals (ideal id, const ring r)
 ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i
 
void id_DelLmEquals (ideal id, const ring r)
 Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.
 
void id_DelDiv (ideal id, const ring r)
 delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., delete id[i], if LT(i) == coeff*mon*LT(j)
 
BOOLEAN id_IsConstant (ideal id, const ring r)
 test if the ideal has only constant polynomials NOTE: zero ideal/module is also constant
 
intvecid_Sort (const ideal id, const BOOLEAN nolex, const ring r)
 sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE
 
ideal id_Transp (ideal a, const ring rRing)
 transpose a module
 
void id_Compactify (ideal id, const ring r)
 
ideal id_Mult (ideal h1, ideal h2, const ring r)
 h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no columns at all)
 
ideal id_Homogen (ideal h, int varnum, const ring r)
 
BOOLEAN id_HomIdeal (ideal id, ideal Q, const ring r)
 
BOOLEAN id_HomIdealDP (ideal id, ideal Q, const ring r)
 
BOOLEAN id_HomIdealW (ideal id, ideal Q, const intvec *w, const ring r)
 
BOOLEAN id_HomModuleW (ideal id, ideal Q, const intvec *w, const intvec *module_w, const ring r)
 
BOOLEAN id_HomModule (ideal m, ideal Q, intvec **w, const ring R)
 
BOOLEAN id_IsZeroDim (ideal I, const ring r)
 
ideal id_Jet (const ideal i, int d, const ring R)
 
ideal id_Jet0 (const ideal i, const ring R)
 
ideal id_JetW (const ideal i, int d, intvec *iv, const ring R)
 
ideal id_Subst (ideal id, int n, poly e, const ring r)
 
matrix id_Module2Matrix (ideal mod, const ring R)
 
matrix id_Module2formatedMatrix (ideal mod, int rows, int cols, const ring R)
 
ideal id_ResizeModule (ideal mod, int rows, int cols, const ring R)
 
ideal id_Matrix2Module (matrix mat, const ring R)
 converts mat to module, destroys mat
 
ideal id_Vec2Ideal (poly vec, const ring R)
 
int binom (int n, int r)
 
void idInitChoise (int r, int beg, int end, BOOLEAN *endch, int *choise)
 
void idGetNextChoise (int r, int end, BOOLEAN *endch, int *choise)
 
int idGetNumberOfChoise (int t, int d, int begin, int end, int *choise)
 
void idShow (const ideal id, const ring lmRing, const ring tailRing, const int debugPrint=0)
 
BOOLEAN id_InsertPolyWithTests (ideal h1, const int validEntries, const poly h2, const bool zeroOk, const bool duplicateOk, const ring r)
 insert h2 into h1 depending on the two boolean parameters:
 
intvecid_QHomWeight (ideal id, const ring r)
 
ideal id_ChineseRemainder (ideal *xx, number *q, int rl, const ring r)
 
void id_Shift (ideal M, int s, const ring r)
 
ideal id_Delete_Pos (const ideal I, const int pos, const ring r)
 
poly id_Array2Vector (poly *m, unsigned n, const ring R)
 for julia: convert an array of poly to vector
 
ideal id_PermIdeal (ideal I, int R, int C, const int *perm, const ring src, const ring dst, nMapFunc nMap, const int *par_perm, int P, BOOLEAN use_mult)
 mapping ideals/matrices to other rings
 

Variables

EXTERN_VAR omBin sip_sideal_bin
 

Data Structure Documentation

◆ sip_sideal

struct sip_sideal

The following sip_sideal structure has many different uses throughout Singular. Basic use-cases for it are:

  • ideal/module: nrows = 1, ncols >=0 and rank:1 for ideals, rank>=0 for modules
  • matrix: nrows, ncols >=0, rank == nrows! see mp_* procedures NOTE: the m member point to memory chunk of size (ncols*nrows*sizeof(poly)) or is NULL

Definition at line 17 of file simpleideals.h.

Data Fields
poly * m
int ncols
int nrows
long rank

◆ sip_smap

struct sip_smap

Definition at line 32 of file simpleideals.h.

Data Fields
poly * m
int ncols
int nrows
char * preimage

◆ sideal_list

struct sideal_list

Definition at line 45 of file simpleideals.h.

Data Fields
ideal d
ideal_list next
int nr

Macro Definition Documentation

◆ id_Elem

#define id_Elem (   F,
  R 
)    idElem(F)

Definition at line 79 of file simpleideals.h.

◆ id_Init

#define id_Init (   s,
  r,
  R 
)    idInit(s,r)

Definition at line 58 of file simpleideals.h.

◆ id_LmTest

#define id_LmTest (   A,
  lR 
)    id_DBLmTest(A, PDEBUG, __FILE__,__LINE__, lR)

Definition at line 90 of file simpleideals.h.

◆ id_Print

#define id_Print (   id,
  lR,
  tR 
)    idShow(id, lR, tR)

Definition at line 161 of file simpleideals.h.

◆ id_Test

#define id_Test (   A,
  lR 
)    id_DBTest(A, PDEBUG, __FILE__,__LINE__, lR, lR)

Definition at line 89 of file simpleideals.h.

◆ IDELEMS

#define IDELEMS (   i)    ((i)->ncols)

Definition at line 23 of file simpleideals.h.

Function Documentation

◆ binom()

int binom ( int  n,
int  r 
)

Definition at line 1194 of file simpleideals.cc.

1195{
1196 int i;
1197 int64 result;
1198
1199 if (r==0) return 1;
1200 if (n-r<r) return binom(n,n-r);
1201 result = n-r+1;
1202 for (i=2;i<=r;i++)
1203 {
1204 result *= n-r+i;
1205 result /= i;
1206 }
1207 if (result>MAX_INT_VAL)
1208 {
1209 WarnS("overflow in binomials");
1210 result=0;
1211 }
1212 return (int)result;
1213}
long int64
Definition auxiliary.h:68
int i
Definition cfEzgcd.cc:132
#define WarnS
Definition emacs.cc:78
return result
const int MAX_INT_VAL
Definition mylimits.h:12
int binom(int n, int r)

◆ id_Add()

ideal id_Add ( ideal  h1,
ideal  h2,
const ring  r 
)

h1 + h2

Definition at line 905 of file simpleideals.cc.

906{
907 id_Test(h1, r);
908 id_Test(h2, r);
909
912 return result;
913}
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
void id_Compactify(ideal id, const ring r)
#define id_Test(A, lR)

◆ id_Array2Vector()

poly id_Array2Vector ( poly *  m,
unsigned  n,
const ring  R 
)

for julia: convert an array of poly to vector

Definition at line 1507 of file simpleideals.cc.

1508{
1509 poly h;
1510 int l;
1511 sBucket_pt bucket = sBucketCreate(R);
1512
1513 for(unsigned j=0;j<n ;j++)
1514 {
1515 h = m[j];
1516 if (h!=NULL)
1517 {
1518 h=p_Copy(h, R);
1519 l=pLength(h);
1520 p_SetCompP(h,j+1, R);
1521 sBucket_Merge_p(bucket, h, l);
1522 }
1523 }
1524 sBucketClearMerge(bucket, &h, &l);
1525 sBucketDestroy(&bucket);
1526 return h;
1527}
int l
Definition cfEzgcd.cc:100
int m
Definition cfEzgcd.cc:128
int j
Definition facHensel.cc:110
STATIC_VAR Poly * h
Definition janet.cc:971
#define NULL
Definition omList.c:12
static int pLength(poly a)
Definition p_polys.h:190
static void p_SetCompP(poly p, int i, ring r)
Definition p_polys.h:255
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition p_polys.h:847
void sBucketClearMerge(sBucket_pt bucket, poly *p, int *length)
Definition sbuckets.cc:237
void sBucket_Merge_p(sBucket_pt bucket, poly p, int length)
Merges p into Spoly: assumes Bpoly and p have no common monoms destroys p!
Definition sbuckets.cc:148
void sBucketDestroy(sBucket_pt *bucket)
Definition sbuckets.cc:103
sBucket_pt sBucketCreate(const ring r)
Definition sbuckets.cc:96
#define R
Definition sirandom.c:27

◆ id_ChineseRemainder()

ideal id_ChineseRemainder ( ideal xx,
number q,
int  rl,
const ring  r 
)

Definition at line 2116 of file simpleideals.cc.

2117{
2118 int cnt=0;int rw=0; int cl=0;
2119 int i,j;
2120 // find max. size of xx[.]:
2121 for(j=rl-1;j>=0;j--)
2122 {
2123 i=IDELEMS(xx[j])*xx[j]->nrows;
2124 if (i>cnt) cnt=i;
2125 if (xx[j]->nrows >rw) rw=xx[j]->nrows; // for lifting matrices
2126 if (xx[j]->ncols >cl) cl=xx[j]->ncols; // for lifting matrices
2127 }
2128 if (rw*cl !=cnt)
2129 {
2130 WerrorS("format mismatch in CRT");
2131 return NULL;
2132 }
2133 ideal result=idInit(cnt,xx[0]->rank);
2134 result->nrows=rw; // for lifting matrices
2135 result->ncols=cl; // for lifting matrices
2136 number *x=(number *)omAlloc(rl*sizeof(number));
2137 poly *p=(poly *)omAlloc(rl*sizeof(poly));
2139 EXTERN_VAR int n_SwitchChinRem; //TEST
2142 for(i=cnt-1;i>=0;i--)
2143 {
2144 for(j=rl-1;j>=0;j--)
2145 {
2146 if(i>=IDELEMS(xx[j])*xx[j]->nrows) // out of range of this ideal
2147 p[j]=NULL;
2148 else
2149 p[j]=xx[j]->m[i];
2150 }
2152 for(j=rl-1;j>=0;j--)
2153 {
2154 if(i<IDELEMS(xx[j])*xx[j]->nrows) xx[j]->m[i]=p[j];
2155 }
2156 }
2158 omFreeSize(p,rl*sizeof(poly));
2159 omFreeSize(x,rl*sizeof(number));
2160 for(i=rl-1;i>=0;i--) id_Delete(&(xx[i]),r);
2161 omFreeSize(xx,rl*sizeof(ideal));
2162 return result;
2163}
Variable x
Definition cfModGcd.cc:4090
int p
Definition cfModGcd.cc:4086
cl
Definition cfModGcd.cc:4108
int int ncols
Definition cf_linsys.cc:32
int nrows
Definition cf_linsys.cc:32
void WerrorS(const char *s)
Definition feFopen.cc:24
#define EXTERN_VAR
Definition globaldefs.h:6
poly p_ChineseRemainder(poly *xx, mpz_ptr *x, mpz_ptr *q, int rl, mpz_ptr *C, const ring R)
VAR int n_SwitchChinRem
Definition longrat.cc:3085
#define omFreeSize(addr, size)
#define omAlloc(size)
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
#define IDELEMS(i)

◆ id_Compactify()

void id_Compactify ( ideal  id,
const ring  r 
)

Definition at line 1441 of file simpleideals.cc.

1442{
1443 int i;
1444 BOOLEAN b=FALSE;
1445
1446 i = IDELEMS(id)-1;
1447 while ((! b) && (i>=0))
1448 {
1449 b=p_IsUnit(id->m[i],r);
1450 i--;
1451 }
1452 if (b)
1453 {
1454 for(i=IDELEMS(id)-1;i>=0;i--) p_Delete(&id->m[i],r);
1455 id->m[0]=p_One(r);
1456 }
1457 else
1458 {
1459 id_DelMultiples(id,r);
1460 }
1461 idSkipZeroes(id);
1462}
int BOOLEAN
Definition auxiliary.h:88
#define FALSE
Definition auxiliary.h:97
CanonicalForm b
Definition cfModGcd.cc:4111
poly p_One(const ring r)
Definition p_polys.cc:1314
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:902
static BOOLEAN p_IsUnit(const poly p, const ring r)
Definition p_polys.h:2006
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size

◆ id_Copy()

ideal id_Copy ( ideal  h1,
const ring  r 
)

copy an ideal

Definition at line 541 of file simpleideals.cc.

542{
543 id_Test(h1, r);
544
545 ideal h2 = idInit(IDELEMS(h1), h1->rank);
546 for (int i=IDELEMS(h1)-1; i>=0; i--)
547 h2->m[i] = p_Copy(h1->m[i],r);
548 return h2;
549}

◆ id_CopyFirstK()

ideal id_CopyFirstK ( const ideal  ide,
const int  k,
const ring  r 
)

copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (Note that the copied entries may be zero.)

Definition at line 265 of file simpleideals.cc.

266{
267 id_Test(ide, r);
268
269 assume( ide != NULL );
270 assume( k <= IDELEMS(ide) );
271
272 ideal newI = idInit(k, ide->rank);
273
274 for (int i = 0; i < k; i++)
275 newI->m[i] = p_Copy(ide->m[i],r);
276
277 return newI;
278}
int k
Definition cfEzgcd.cc:99
#define assume(x)
Definition mod2.h:389

◆ id_DBLmTest()

void id_DBLmTest ( ideal  h1,
int  level,
const char f,
const int  l,
const ring  r 
)

Internal verification for ideals/modules and dense matrices!

Definition at line 604 of file simpleideals.cc.

605{
606 if (h1 != NULL)
607 {
608 // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix
609 omCheckAddrSize(h1,sizeof(*h1));
610
611 assume( h1->ncols >= 0 );
612 assume( h1->nrows >= 0 ); // matrix case!
613
614 assume( h1->rank >= 0 );
615
616 const long n = ((long)h1->ncols * (long)h1->nrows);
617
618 assume( !( n > 0 && h1->m == NULL) );
619
620 if( h1->m != NULL && n > 0 )
621 omdebugAddrSize(h1->m, n * sizeof(poly));
622
623 long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing);
624
625 /* to be able to test matrices: */
626 for (long i=n - 1; i >= 0; i--)
627 {
628 if (h1->m[i]!=NULL)
629 {
630 _p_LmTest(h1->m[i], r, level);
631 const long k = p_GetComp(h1->m[i], r);
632 if (k > new_rk) new_rk = k;
633 }
634 }
635
636 // dense matrices only contain polynomials:
637 // h1->nrows == h1->rank > 1 && new_rk == 0!
638 assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); //
639
640 if(new_rk > h1->rank)
641 {
642 dReportError("wrong rank %d (should be %d) in %s:%d\n",
643 h1->rank, new_rk, f,l);
644 omPrintAddrInfo(stderr, h1, " for ideal");
645 h1->rank = new_rk;
646 }
647 }
648 else
649 {
650 Print("error: ideal==NULL in %s:%d\n",f,l);
651 assume( h1 != NULL );
652 }
653}
int level(const CanonicalForm &f)
FILE * f
Definition checklibs.c:9
#define Print
Definition emacs.cc:80
int dReportError(const char *fmt,...)
Definition dError.cc:44
#define p_GetComp(p, r)
Definition monomials.h:64
#define omdebugAddrSize(addr, size)
#define omCheckAddrSize(addr, size)
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition pDebug.cc:322
#define omPrintAddrInfo(A, B, C)
Definition xalloc.h:270

◆ id_DBTest()

void id_DBTest ( ideal  h1,
int  level,
const char f,
const int  l,
const ring  lR,
const ring  tR 
)

Internal verification for ideals/modules and dense matrices!

Definition at line 553 of file simpleideals.cc.

554{
555 if (h1 != NULL)
556 {
557 // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix
558 omCheckAddrSize(h1,sizeof(*h1));
559
560 assume( h1->ncols >= 0 );
561 assume( h1->nrows >= 0 ); // matrix case!
562
563 assume( h1->rank >= 0 );
564
565 const long n = ((long)h1->ncols * (long)h1->nrows);
566
567 assume( !( n > 0 && h1->m == NULL) );
568
569 if( h1->m != NULL && n > 0 )
570 omdebugAddrSize(h1->m, n * sizeof(poly));
571
572 long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing);
573
574 /* to be able to test matrices: */
575 for (long i=n - 1; i >= 0; i--)
576 {
577 _pp_Test(h1->m[i], r, tailRing, level);
578 const long k = p_MaxComp(h1->m[i], r, tailRing);
579 if (k > new_rk) new_rk = k;
580 }
581
582 // dense matrices only contain polynomials:
583 // h1->nrows == h1->rank > 1 && new_rk == 0!
584 assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); //
585
586 if(new_rk > h1->rank)
587 {
588 dReportError("wrong rank %d (should be %d) in %s:%d\n",
589 h1->rank, new_rk, f,l);
590 omPrintAddrInfo(stderr, h1, " for ideal");
591 h1->rank = new_rk;
592 }
593 }
594 else
595 {
596 Print("error: ideal==NULL in %s:%d\n",f,l);
597 assume( h1 != NULL );
598 }
599}
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:293
BOOLEAN _pp_Test(poly p, ring lmRing, ring tailRing, int level)
Definition pDebug.cc:332

◆ id_DelDiv()

void id_DelDiv ( ideal  id,
const ring  r 
)

delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., delete id[i], if LT(i) == coeff*mon*LT(j)

Definition at line 462 of file simpleideals.cc.

463{
464 id_Test(id, r);
465
466 int i, j;
467 int k = IDELEMS(id)-1;
468#ifdef HAVE_RINGS
469 if (rField_is_Ring(r))
470 {
471 for (i=k-1; i>=0; i--)
472 {
473 if (id->m[i] != NULL)
474 {
475 for (j=k; j>i; j--)
476 {
477 if (id->m[j]!=NULL)
478 {
479 if (p_DivisibleByRingCase(id->m[i], id->m[j],r))
480 {
481 p_Delete(&id->m[j],r);
482 }
483 else if (p_DivisibleByRingCase(id->m[j], id->m[i],r))
484 {
485 p_Delete(&id->m[i],r);
486 break;
487 }
488 }
489 }
490 }
491 }
492 }
493 else
494#endif
495 {
496 /* the case of a coefficient field: */
497 if (k>9)
498 {
499 id_DelDiv_SEV(id,k,r);
500 return;
501 }
502 for (i=k-1; i>=0; i--)
503 {
504 if (id->m[i] != NULL)
505 {
506 for (j=k; j>i; j--)
507 {
508 if (id->m[j]!=NULL)
509 {
510 if (p_LmDivisibleBy(id->m[i], id->m[j],r))
511 {
512 p_Delete(&id->m[j],r);
513 }
514 else if (p_LmDivisibleBy(id->m[j], id->m[i],r))
515 {
516 p_Delete(&id->m[i],r);
517 break;
518 }
519 }
520 }
521 }
522 }
523 }
524}
BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r)
divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g),...
Definition p_polys.cc:1646
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition p_polys.h:1906
#define rField_is_Ring(R)
Definition ring.h:490
static void id_DelDiv_SEV(ideal id, int k, const ring r)
delete id[j], if LT(j) == coeff*mon*LT(i)

◆ id_DelEquals()

void id_DelEquals ( ideal  id,
const ring  r 
)

ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i

Definition at line 330 of file simpleideals.cc.

331{
332 id_Test(id, r);
333
334 int i, j;
335 int k = IDELEMS(id)-1;
336 for (i=k; i>=0; i--)
337 {
338 if (id->m[i]!=NULL)
339 {
340 for (j=k; j>i; j--)
341 {
342 if ((id->m[j]!=NULL)
343 && (p_EqualPolys(id->m[i], id->m[j],r)))
344 {
345 p_Delete(&id->m[j],r);
346 }
347 }
348 }
349 }
350}
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
Definition p_polys.cc:4581

◆ id_Delete()

void id_Delete ( ideal h,
ring  r 
)

deletes an ideal/module/matrix

Definition at line 123 of file simpleideals.cc.

124{
125 if (*h == NULL)
126 return;
127
128 id_Test(*h, r);
129
130 const long elems = (long)(*h)->nrows * (long)(*h)->ncols;
131
132 if ( elems > 0 )
133 {
134 assume( (*h)->m != NULL );
135
136 if (r!=NULL)
137 {
138 long j = elems;
139 do
140 {
141 j--;
142 poly pp=((*h)->m[j]);
143 if (pp!=NULL) p_Delete(&pp, r);
144 }
145 while (j>0);
146 }
147
148 omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems);
149 }
150
152 *h=NULL;
153}
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
#define omFreeBin(addr, bin)
VAR omBin sip_sideal_bin

◆ id_Delete0()

void id_Delete0 ( ideal h,
ring  r 
)

Definition at line 155 of file simpleideals.cc.

156{
157 const long elems = IDELEMS(*h);
158
159 assume( (*h)->m != NULL );
160
161 long j = elems;
162 do
163 {
164 j--;
165 poly pp=((*h)->m[j]);
166 if (pp!=NULL) p_Delete(&pp, r);
167 }
168 while (j>0);
169
170 omFree((ADDRESS)((*h)->m));
172 *h=NULL;
173}
#define omFree(addr)

◆ id_Delete_Pos()

ideal id_Delete_Pos ( const ideal  I,
const int  pos,
const ring  r 
)

Definition at line 2179 of file simpleideals.cc.

2180{
2181 if ((p<0)||(p>=IDELEMS(I))) return NULL;
2182 ideal ret=idInit(IDELEMS(I)-1,I->rank);
2183 for(int i=0;i<p;i++) ret->m[i]=p_Copy(I->m[i],r);
2184 for(int i=p+1;i<IDELEMS(I);i++) ret->m[i-1]=p_Copy(I->m[i],r);
2185 return ret;
2186}

◆ id_DelLmEquals()

void id_DelLmEquals ( ideal  id,
const ring  r 
)

Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.

Definition at line 353 of file simpleideals.cc.

354{
355 id_Test(id, r);
356
357 int i, j;
358 int k = IDELEMS(id)-1;
359 for (i=k; i>=0; i--)
360 {
361 if (id->m[i] != NULL)
362 {
363 for (j=k; j>i; j--)
364 {
365 if ((id->m[j] != NULL)
366 && p_LmEqual(id->m[i], id->m[j],r)
368 && n_IsUnit(pGetCoeff(id->m[i]),r->cf) && n_IsUnit(pGetCoeff(id->m[j]),r->cf)
369#endif
370 )
371 {
372 p_Delete(&id->m[j],r);
373 }
374 }
375 }
376 }
377}
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define p_LmEqual(p1, p2, r)
Definition p_polys.h:1738

◆ id_DelMultiples()

void id_DelMultiples ( ideal  id,
const ring  r 
)

ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i

Definition at line 295 of file simpleideals.cc.

296{
297 id_Test(id, r);
298
299 int i, j;
300 int k = IDELEMS(id)-1;
301 for (i=k; i>=0; i--)
302 {
303 if (id->m[i]!=NULL)
304 {
305 for (j=k; j>i; j--)
306 {
307 if (id->m[j]!=NULL)
308 {
309 if (rField_is_Ring(r))
310 {
311 /* if id[j] = c*id[i] then delete id[j].
312 In the below cases of a ground field, we
313 check whether id[i] = c*id[j] and, if so,
314 delete id[j] for historical reasons (so
315 that previous output does not change) */
316 if (p_ComparePolys(id->m[j], id->m[i],r)) p_Delete(&id->m[j],r);
317 }
318 else
319 {
320 if (p_ComparePolys(id->m[i], id->m[j],r)) p_Delete(&id->m[j],r);
321 }
322 }
323 }
324 }
325 }
326}
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition p_polys.cc:4645

◆ id_FreeModule()

ideal id_FreeModule ( int  i,
const ring  r 
)

the free module of rank i

Definition at line 1217 of file simpleideals.cc.

1218{
1219 assume(i >= 0);
1220 if (r->isLPring)
1221 {
1222 PrintS("In order to address bimodules, the command freeAlgebra should be used.");
1223 }
1224 ideal h = idInit(i, i);
1225
1226 for (int j=0; j<i; j++)
1227 {
1228 h->m[j] = p_One(r);
1229 p_SetComp(h->m[j],j+1,r);
1230 p_SetmComp(h->m[j],r);
1231 }
1232
1233 return h;
1234}
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition p_polys.h:248
#define p_SetmComp
Definition p_polys.h:245
void PrintS(const char *s)
Definition reporter.cc:284

◆ id_Head()

ideal id_Head ( ideal  h,
const ring  r 
)

returns the ideals of initial terms

Definition at line 1465 of file simpleideals.cc.

1466{
1467 ideal m = idInit(IDELEMS(h),h->rank);
1468
1469 if (r->cf->has_simple_Alloc)
1470 {
1471 for (int i=IDELEMS(h)-1;i>=0; i--)
1472 if (h->m[i]!=NULL)
1473 m->m[i]=p_CopyPowerProduct0(h->m[i],pGetCoeff(h->m[i]),r);
1474 }
1475 else
1476 {
1477 for (int i=IDELEMS(h)-1;i>=0; i--)
1478 if (h->m[i]!=NULL)
1479 m->m[i]=p_Head(h->m[i],r);
1480 }
1481
1482 return m;
1483}
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition p_polys.cc:5037
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition p_polys.h:861

◆ id_HomIdeal()

BOOLEAN id_HomIdeal ( ideal  id,
ideal  Q,
const ring  r 
)

Definition at line 1015 of file simpleideals.cc.

1016{
1017 int i;
1018 BOOLEAN b;
1019 i = 0;
1020 b = TRUE;
1021 while ((i < IDELEMS(id)) && b)
1022 {
1023 b = p_IsHomogeneous(id->m[i],r);
1024 i++;
1025 }
1026 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1027 {
1028 i=0;
1029 while ((i < IDELEMS(Q)) && b)
1030 {
1031 b = p_IsHomogeneous(Q->m[i],r);
1032 i++;
1033 }
1034 }
1035 return b;
1036}
#define TRUE
Definition auxiliary.h:101
BOOLEAN p_IsHomogeneous(poly p, const ring r)
Definition p_polys.cc:3323
#define Q
Definition sirandom.c:26

◆ id_HomIdealDP()

BOOLEAN id_HomIdealDP ( ideal  id,
ideal  Q,
const ring  r 
)

Definition at line 1041 of file simpleideals.cc.

1042{
1043 int i;
1044 BOOLEAN b;
1045 i = 0;
1046 b = TRUE;
1047 while ((i < IDELEMS(id)) && b)
1048 {
1049 b = p_IsHomogeneousDP(id->m[i],r);
1050 i++;
1051 }
1052 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1053 {
1054 i=0;
1055 while ((i < IDELEMS(Q)) && b)
1056 {
1057 b = p_IsHomogeneousDP(Q->m[i],r);
1058 i++;
1059 }
1060 }
1061 return b;
1062}
BOOLEAN p_IsHomogeneousDP(poly p, const ring r)
Definition p_polys.cc:3347

◆ id_HomIdealW()

BOOLEAN id_HomIdealW ( ideal  id,
ideal  Q,
const intvec w,
const ring  r 
)

Definition at line 1064 of file simpleideals.cc.

1065{
1066 int i;
1067 BOOLEAN b;
1068 i = 0;
1069 b = TRUE;
1070 while ((i < IDELEMS(id)) && b)
1071 {
1072 b = p_IsHomogeneousW(id->m[i],w,r);
1073 i++;
1074 }
1075 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1076 {
1077 i=0;
1078 while ((i < IDELEMS(Q)) && b)
1079 {
1080 b = p_IsHomogeneousW(Q->m[i],w,r);
1081 i++;
1082 }
1083 }
1084 return b;
1085}
const CanonicalForm & w
Definition facAbsFact.cc:51
BOOLEAN p_IsHomogeneousW(poly p, const intvec *w, const ring r)
Definition p_polys.cc:3366

◆ id_HomModule()

BOOLEAN id_HomModule ( ideal  m,
ideal  Q,
intvec **  w,
const ring  R 
)

Definition at line 1694 of file simpleideals.cc.

1695{
1696 if (w!=NULL) *w=NULL;
1697 if ((Q!=NULL) && (!id_HomIdeal(Q,NULL,R))) return FALSE;
1698 if (idIs0(m))
1699 {
1700 if (w!=NULL) (*w)=new intvec(m->rank);
1701 return TRUE;
1702 }
1703
1704 long cmax=1,order=0,ord,* diff,diffmin=32000;
1705 int *iscom;
1706 int i;
1707 poly p=NULL;
1708 pFDegProc d;
1709 if (R->pLexOrder && (R->order[0]==ringorder_lp))
1710 d=p_Totaldegree;
1711 else
1712 d=R->pFDeg;
1713 int length=IDELEMS(m);
1714 poly* P=m->m;
1715 poly* F=(poly*)omAlloc(length*sizeof(poly));
1716 for (i=length-1;i>=0;i--)
1717 {
1718 p=F[i]=P[i];
1720 }
1721 cmax++;
1722 diff = (long *)omAlloc0(cmax*sizeof(long));
1723 if (w!=NULL) *w=new intvec(cmax-1);
1724 iscom = (int *)omAlloc0(cmax*sizeof(int));
1725 i=0;
1726 while (i<=length)
1727 {
1728 if (i<length)
1729 {
1730 p=F[i];
1731 while ((p!=NULL) && (iscom[__p_GetComp(p,R)]==0)) pIter(p);
1732 }
1733 if ((p==NULL) && (i<length))
1734 {
1735 i++;
1736 }
1737 else
1738 {
1739 if (p==NULL) /* && (i==length) */
1740 {
1741 i=0;
1742 while ((i<length) && (F[i]==NULL)) i++;
1743 if (i>=length) break;
1744 p = F[i];
1745 }
1746 //if (pLexOrder && (currRing->order[0]==ringorder_lp))
1747 // order=pTotaldegree(p);
1748 //else
1749 // order = p->order;
1750 // order = pFDeg(p,currRing);
1751 order = d(p,R) +diff[__p_GetComp(p,R)];
1752 //order += diff[pGetComp(p)];
1753 p = F[i];
1754//Print("Actual p=F[%d]: ",i);pWrite(p);
1755 F[i] = NULL;
1756 i=0;
1757 }
1758 while (p!=NULL)
1759 {
1760 if (R->pLexOrder && (R->order[0]==ringorder_lp))
1761 ord=p_Totaldegree(p,R);
1762 else
1763 // ord = p->order;
1764 ord = R->pFDeg(p,R);
1765 if (iscom[__p_GetComp(p,R)]==0)
1766 {
1767 diff[__p_GetComp(p,R)] = order-ord;
1768 iscom[__p_GetComp(p,R)] = 1;
1769/*
1770*PrintS("new diff: ");
1771*for (j=0;j<cmax;j++) Print("%d ",diff[j]);
1772*PrintLn();
1773*PrintS("new iscom: ");
1774*for (j=0;j<cmax;j++) Print("%d ",iscom[j]);
1775*PrintLn();
1776*Print("new set %d, order %d, ord %d, diff %d\n",pGetComp(p),order,ord,diff[pGetComp(p)]);
1777*/
1778 }
1779 else
1780 {
1781/*
1782*PrintS("new diff: ");
1783*for (j=0;j<cmax;j++) Print("%d ",diff[j]);
1784*PrintLn();
1785*Print("order %d, ord %d, diff %d\n",order,ord,diff[pGetComp(p)]);
1786*/
1787 if (order != (ord+diff[__p_GetComp(p,R)]))
1788 {
1789 omFreeSize((ADDRESS) iscom,cmax*sizeof(int));
1790 omFreeSize((ADDRESS) diff,cmax*sizeof(long));
1791 omFreeSize((ADDRESS) F,length*sizeof(poly));
1792 delete *w;*w=NULL;
1793 return FALSE;
1794 }
1795 }
1796 pIter(p);
1797 }
1798 }
1799 omFreeSize((ADDRESS) iscom,cmax*sizeof(int));
1800 omFreeSize((ADDRESS) F,length*sizeof(poly));
1801 for (i=1;i<cmax;i++) (**w)[i-1]=(int)(diff[i]);
1802 for (i=1;i<cmax;i++)
1803 {
1804 if (diff[i]<diffmin) diffmin=diff[i];
1805 }
1806 if (w!=NULL)
1807 {
1808 for (i=1;i<cmax;i++)
1809 {
1810 (**w)[i-1]=(int)(diff[i]-diffmin);
1811 }
1812 }
1813 omFreeSize((ADDRESS) diff,cmax*sizeof(long));
1814 return TRUE;
1815}
static int si_max(const int a, const int b)
Definition auxiliary.h:125
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
#define pIter(p)
Definition monomials.h:37
#define __p_GetComp(p, r)
Definition monomials.h:63
STATIC_VAR gmp_float * diff
#define omAlloc0(size)
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1522
long(* pFDegProc)(poly p, ring r)
Definition ring.h:38
@ ringorder_lp
Definition ring.h:77
BOOLEAN id_HomIdeal(ideal id, ideal Q, const ring r)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal

◆ id_HomModuleW()

BOOLEAN id_HomModuleW ( ideal  id,
ideal  Q,
const intvec w,
const intvec module_w,
const ring  r 
)

Definition at line 1087 of file simpleideals.cc.

1088{
1089 int i;
1090 BOOLEAN b;
1091 i = 0;
1092 b = TRUE;
1093 while ((i < IDELEMS(id)) && b)
1094 {
1095 b = p_IsHomogeneousW(id->m[i],w,module_w,r);
1096 i++;
1097 }
1098 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1099 {
1100 i=0;
1101 while ((i < IDELEMS(Q)) && b)
1102 {
1103 b = p_IsHomogeneousW(Q->m[i],w,r);
1104 i++;
1105 }
1106 }
1107 return b;
1108}

◆ id_Homogen()

ideal id_Homogen ( ideal  h,
int  varnum,
const ring  r 
)

Definition at line 1485 of file simpleideals.cc.

1486{
1487 ideal m = idInit(IDELEMS(h),h->rank);
1488 int i;
1489
1490 for (i=IDELEMS(h)-1;i>=0; i--)
1491 {
1492 m->m[i]=p_Homogen(h->m[i],varnum,r);
1493 }
1494 return m;
1495}
poly p_Homogen(poly p, int varnum, const ring r)
Definition p_polys.cc:3274

◆ id_InsertPolyWithTests()

BOOLEAN id_InsertPolyWithTests ( ideal  h1,
const int  validEntries,
const poly  h2,
const bool  zeroOk,
const bool  duplicateOk,
const ring  r 
)

insert h2 into h1 depending on the two boolean parameters:

  • if zeroOk is true, then h2 will also be inserted when it is zero
  • if duplicateOk is true, then h2 will also be inserted when it is already present in h1 return TRUE iff h2 was indeed inserted

Definition at line 877 of file simpleideals.cc.

879{
880 id_Test(h1, r);
881 p_Test(h2, r);
882
883 if ((!zeroOk) && (h2 == NULL)) return FALSE;
884 if (!duplicateOk)
885 {
886 bool h2FoundInH1 = false;
887 int i = 0;
888 while ((i < validEntries) && (!h2FoundInH1))
889 {
890 h2FoundInH1 = p_EqualPolys(h1->m[i], h2,r);
891 i++;
892 }
893 if (h2FoundInH1) return FALSE;
894 }
895 if (validEntries == IDELEMS(h1))
896 {
897 pEnlargeSet(&(h1->m), IDELEMS(h1), 16);
898 IDELEMS(h1) += 16;
899 }
900 h1->m[validEntries] = h2;
901 return TRUE;
902}
void pEnlargeSet(poly **p, int l, int increment)
Definition p_polys.cc:3736
#define p_Test(p, r)
Definition p_polys.h:161

◆ id_IsConstant()

BOOLEAN id_IsConstant ( ideal  id,
const ring  r 
)

test if the ideal has only constant polynomials NOTE: zero ideal/module is also constant

Definition at line 528 of file simpleideals.cc.

529{
530 id_Test(id, r);
531
532 for (int k = IDELEMS(id)-1; k>=0; k--)
533 {
534 if (!p_IsConstantPoly(id->m[k],r))
535 return FALSE;
536 }
537 return TRUE;
538}
static BOOLEAN p_IsConstantPoly(const poly p, const ring r)
Definition p_polys.h:1993

◆ id_IsModule()

BOOLEAN id_IsModule ( ideal  A,
const ring  src 
)

Definition at line 993 of file simpleideals.cc.

994{
995 if ((src->VarOffset[0]== -1)
996 || (src->pCompIndex<0))
997 return FALSE; // ring without components
998 for (int i=0;i<IDELEMS(A);i++)
999 {
1000 if (A->m[i]!=NULL)
1001 {
1002 if (p_GetComp(A->m[i],src)>0)
1003 return TRUE;
1004 else
1005 return FALSE;
1006 }
1007 }
1008 return A->rank>1;
1009}
#define A
Definition sirandom.c:24

◆ id_IsZeroDim()

BOOLEAN id_IsZeroDim ( ideal  I,
const ring  r 
)

Definition at line 1934 of file simpleideals.cc.

1935{
1936 BOOLEAN *UsedAxis=(BOOLEAN *)omAlloc0(rVar(r)*sizeof(BOOLEAN));
1937 int i,n;
1938 poly po;
1940 for(i=IDELEMS(I)-1;i>=0;i--)
1941 {
1942 po=I->m[i];
1943 if ((po!=NULL) &&((n=p_IsPurePower(po,r))!=0)) UsedAxis[n-1]=TRUE;
1944 }
1945 for(i=rVar(r)-1;i>=0;i--)
1946 {
1947 if(UsedAxis[i]==FALSE) {res=FALSE; break;} // not zero-dim.
1948 }
1949 omFreeSize(UsedAxis,rVar(r)*sizeof(BOOLEAN));
1950 return res;
1951}
CanonicalForm res
Definition facAbsFact.cc:60
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1227
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597

◆ id_Jet()

ideal id_Jet ( const ideal  i,
int  d,
const ring  R 
)

Definition at line 1817 of file simpleideals.cc.

1818{
1819 ideal r=idInit((i->nrows)*(i->ncols),i->rank);
1820 r->nrows = i-> nrows;
1821 r->ncols = i-> ncols;
1822 //r->rank = i-> rank;
1823
1824 for(long k=((long)(i->nrows))*((long)(i->ncols))-1;k>=0; k--)
1825 r->m[k]=pp_Jet(i->m[k],d,R);
1826
1827 return r;
1828}
poly pp_Jet(poly p, int m, const ring R)
Definition p_polys.cc:4399

◆ id_Jet0()

ideal id_Jet0 ( const ideal  i,
const ring  R 
)

Definition at line 1830 of file simpleideals.cc.

1831{
1832 ideal r=idInit((i->nrows)*(i->ncols),i->rank);
1833 r->nrows = i-> nrows;
1834 r->ncols = i-> ncols;
1835 //r->rank = i-> rank;
1836
1837 for(long k=((long)(i->nrows))*((long)(i->ncols))-1;k>=0; k--)
1838 r->m[k]=pp_Jet0(i->m[k],R);
1839
1840 return r;
1841}
poly pp_Jet0(poly p, const ring R)
Definition p_polys.cc:4427

◆ id_JetW()

ideal id_JetW ( const ideal  i,
int  d,
intvec iv,
const ring  R 
)

Definition at line 1843 of file simpleideals.cc.

1844{
1845 ideal r=idInit(IDELEMS(i),i->rank);
1846 if (ecartWeights!=NULL)
1847 {
1848 WerrorS("cannot compute weighted jets now");
1849 }
1850 else
1851 {
1852 int *w=iv2array(iv,R);
1853 int k;
1854 for(k=0; k<IDELEMS(i); k++)
1855 {
1856 r->m[k]=pp_JetW(i->m[k],d,w,R);
1857 }
1858 omFreeSize((ADDRESS)w,(rVar(R)+1)*sizeof(int));
1859 }
1860 return r;
1861}
poly pp_JetW(poly p, int m, int *w, const ring R)
Definition p_polys.cc:4472
int * iv2array(intvec *iv, const ring R)
Definition weight.cc:200
EXTERN_VAR short * ecartWeights
Definition weight.h:12

◆ id_Matrix2Module()

ideal id_Matrix2Module ( matrix  mat,
const ring  R 
)

converts mat to module, destroys mat

Definition at line 1530 of file simpleideals.cc.

1531{
1532 int mc=MATCOLS(mat);
1533 int mr=MATROWS(mat);
1534 ideal result = idInit(mc,mr);
1535 int i,j,l;
1536 poly h;
1537 sBucket_pt bucket = sBucketCreate(R);
1538
1539 for(j=0;j<mc /*MATCOLS(mat)*/;j++) /* j is also index in result->m */
1540 {
1541 for (i=0;i<mr /*MATROWS(mat)*/;i++)
1542 {
1543 h = MATELEM0(mat,i,j);
1544 if (h!=NULL)
1545 {
1546 l=pLength(h);
1547 MATELEM0(mat,i,j)=NULL;
1548 p_SetCompP(h,i+1, R);
1549 sBucket_Merge_p(bucket, h, l);
1550 }
1551 }
1552 sBucketClearMerge(bucket, &(result->m[j]), &l);
1553 }
1554 sBucketDestroy(&bucket);
1555
1556 // obachman: need to clean this up
1557 id_Delete((ideal*) &mat,R);
1558 return result;
1559}
#define MATELEM0(mat, i, j)
0-based access to matrix
Definition matpol.h:31
#define MATROWS(i)
Definition matpol.h:26
#define MATCOLS(i)
Definition matpol.h:27

◆ id_MaxIdeal() [1/2]

ideal id_MaxIdeal ( const ring  r)

initialise the maximal ideal (at 0)

Definition at line 98 of file simpleideals.cc.

99{
100 int nvars;
101#ifdef HAVE_SHIFTBBA
102 if (r->isLPring)
103 {
104 nvars = r->isLPring;
105 }
106 else
107#endif
108 {
109 nvars = rVar(r);
110 }
111 ideal hh = idInit(nvars, 1);
112 for (int l=nvars-1; l>=0; l--)
113 {
114 hh->m[l] = p_One(r);
115 p_SetExp(hh->m[l],l+1,1,r);
116 p_Setm(hh->m[l],r);
117 }
118 id_Test(hh, r);
119 return hh;
120}
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition p_polys.h:489
static void p_Setm(poly p, const ring r)
Definition p_polys.h:234

◆ id_MaxIdeal() [2/2]

ideal id_MaxIdeal ( int  deg,
const ring  r 
)

Definition at line 1334 of file simpleideals.cc.

1335{
1336 if (deg < 1)
1337 {
1338 ideal I=idInit(1,1);
1339 I->m[0]=p_One(r);
1340 return I;
1341 }
1342 if (deg == 1
1344 && !r->isLPring
1345#endif
1346 )
1347 {
1348 return id_MaxIdeal(r);
1349 }
1350
1351 int vars, i;
1352#ifdef HAVE_SHIFTBBA
1353 if (r->isLPring)
1354 {
1355 vars = r->isLPring - r->LPncGenCount;
1356 i = 1;
1357 // i = vars^deg
1358 for (int j = 0; j < deg; j++)
1359 {
1360 i *= vars;
1361 }
1362 }
1363 else
1364#endif
1365 {
1366 vars = rVar(r);
1367 i = binom(vars+deg-1,deg);
1368 }
1369 if (i<=0) return idInit(1,1);
1370 ideal id=idInit(i,1);
1371 idpower = id->m;
1372 idpowerpoint = 0;
1373#ifdef HAVE_SHIFTBBA
1374 if (r->isLPring)
1375 {
1376 lpmakemonoms(vars, deg, r);
1377 }
1378 else
1379#endif
1380 {
1381 makemonoms(vars,1,deg,0,r);
1382 }
1383 idpower = NULL;
1384 idpowerpoint = 0;
1385 return id;
1386}
STATIC_VAR int idpowerpoint
STATIC_VAR poly * idpower
static void makemonoms(int vars, int actvar, int deg, int monomdeg, const ring r)
ideal id_MaxIdeal(const ring r)
initialise the maximal ideal (at 0)
static void lpmakemonoms(int vars, int deg, const ring r)

◆ id_MinDegW()

int id_MinDegW ( ideal  M,
intvec w,
const ring  r 
)

Definition at line 1963 of file simpleideals.cc.

1964{
1965 int d=-1;
1966 for(int i=0;i<IDELEMS(M);i++)
1967 {
1968 if (M->m[i]!=NULL)
1969 {
1970 int d0=p_MinDeg(M->m[i],w,r);
1971 if(-1<d0&&((d0<d)||(d==-1)))
1972 d=d0;
1973 }
1974 }
1975 return d;
1976}
int p_MinDeg(poly p, intvec *w, const ring R)
Definition p_polys.cc:4517
#define M
Definition sirandom.c:25

◆ id_Module2formatedMatrix()

matrix id_Module2formatedMatrix ( ideal  mod,
int  rows,
int  cols,
const ring  R 
)

Definition at line 1610 of file simpleideals.cc.

1611{
1612 matrix result = mpNew(rows,cols);
1613 int i,cp,r=id_RankFreeModule(mod,R),c=IDELEMS(mod);
1614 poly p,h;
1615
1616 if (r>rows) r = rows;
1617 if (c>cols) c = cols;
1618 for(i=0;i<c;i++)
1619 {
1620 p=pReverse(mod->m[i]);
1621 mod->m[i]=NULL;
1622 while (p!=NULL)
1623 {
1624 h=p;
1625 pIter(p);
1626 pNext(h)=NULL;
1627 cp = p_GetComp(h,R);
1628 if (cp<=r)
1629 {
1630 p_SetComp(h,0,R);
1631 p_SetmComp(h,R);
1632 MATELEM0(result,cp-1,i) = p_Add_q(MATELEM0(result,cp-1,i),h,R);
1633 }
1634 else
1635 p_Delete(&h,R);
1636 }
1637 }
1638 id_Delete(&mod,R);
1639 return result;
1640}
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition matpol.cc:37
#define pNext(p)
Definition monomials.h:36
static poly p_Add_q(poly p, poly q, const ring r)
Definition p_polys.h:937
static poly pReverse(poly p)
Definition p_polys.h:336
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s

◆ id_Module2Matrix()

matrix id_Module2Matrix ( ideal  mod,
const ring  R 
)

Definition at line 1564 of file simpleideals.cc.

1565{
1566 matrix result = mpNew(mod->rank,IDELEMS(mod));
1567 long i; long cp;
1568 poly p,h;
1569
1570 for(i=0;i<IDELEMS(mod);i++)
1571 {
1572 p=pReverse(mod->m[i]);
1573 mod->m[i]=NULL;
1574 while (p!=NULL)
1575 {
1576 h=p;
1577 pIter(p);
1578 pNext(h)=NULL;
1579 cp = si_max(1L,p_GetComp(h, R)); // if used for ideals too
1580 //cp = p_GetComp(h,R);
1581 p_SetComp(h,0,R);
1582 p_SetmComp(h,R);
1583#ifdef TEST
1584 if (cp>mod->rank)
1585 {
1586 Print("## inv. rank %ld -> %ld\n",mod->rank,cp);
1587 int k,l,o=mod->rank;
1588 mod->rank=cp;
1589 matrix d=mpNew(mod->rank,IDELEMS(mod));
1590 for (l=0; l<o; l++)
1591 {
1592 for (k=0; k<IDELEMS(mod); k++)
1593 {
1596 }
1597 }
1598 id_Delete((ideal *)&result,R);
1599 result=d;
1600 }
1601#endif
1602 MATELEM0(result,cp-1,i) = p_Add_q(MATELEM0(result,cp-1,i),h,R);
1603 }
1604 }
1605 // obachman 10/99: added the following line, otherwise memory leak!
1606 id_Delete(&mod,R);
1607 return result;
1608}

◆ id_Mult()

ideal id_Mult ( ideal  h1,
ideal  h2,
const ring  r 
)

h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no columns at all)

Definition at line 918 of file simpleideals.cc.

919{
920 id_Test(h1, R);
921 id_Test(h2, R);
922
923 int j = IDELEMS(h1);
924 while ((j > 0) && (h1->m[j-1] == NULL)) j--;
925
926 int i = IDELEMS(h2);
927 while ((i > 0) && (h2->m[i-1] == NULL)) i--;
928
929 j *= i;
930 int r = si_max( h2->rank, h1->rank );
931 if (j==0)
932 {
933 if ((IDELEMS(h1)>0) && (IDELEMS(h2)>0)) j=1;
934 return idInit(j, r);
935 }
936 ideal hh = idInit(j, r);
937
938 int k = 0;
939 for (i=0; i<IDELEMS(h1); i++)
940 {
941 if (h1->m[i] != NULL)
942 {
943 for (j=0; j<IDELEMS(h2); j++)
944 {
945 if (h2->m[j] != NULL)
946 {
947 hh->m[k] = pp_Mult_qq(h1->m[i],h2->m[j],R);
948 k++;
949 }
950 }
951 }
952 }
953
955 return hh;
956}
static poly pp_Mult_qq(poly p, poly q, const ring r)
Definition p_polys.h:1161

◆ id_Norm()

void id_Norm ( ideal  id,
const ring  r 
)

ideal id = (id[i]), result is leadcoeff(id[i]) = 1

Definition at line 281 of file simpleideals.cc.

282{
283 id_Test(id, r);
284 for (int i=IDELEMS(id)-1; i>=0; i--)
285 {
286 if (id->m[i] != NULL)
287 {
288 p_Norm(id->m[i],r);
289 }
290 }
291}
void p_Norm(poly p1, const ring r)
Definition p_polys.cc:3759

◆ id_Normalize()

void id_Normalize ( ideal  id,
const ring  r 
)

normialize all polys in id

Definition at line 1953 of file simpleideals.cc.

1954{
1955 if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */
1956 int i;
1957 for(i=I->nrows*I->ncols-1;i>=0;i--)
1958 {
1959 p_Normalize(I->m[i],r);
1960 }
1961}
void p_Normalize(poly p, const ring r)
Definition p_polys.cc:3854
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition ring.h:553

◆ id_PermIdeal()

ideal id_PermIdeal ( ideal  I,
int  R,
int  C,
const int perm,
const ring  src,
const ring  dst,
nMapFunc  nMap,
const int par_perm,
int  P,
BOOLEAN  use_mult 
)

mapping ideals/matrices to other rings

Definition at line 2188 of file simpleideals.cc.

2190{
2191 ideal II=(ideal)mpNew(R,C);
2192 II->rank=I->rank;
2193 for(int i=R*C-1; i>=0; i--)
2194 {
2195 II->m[i]=p_PermPoly(I->m[i],perm,src,dst,nMap,par_perm,P,use_mult);
2196 }
2197 return II;
2198}
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4171

◆ id_PosConstant()

int id_PosConstant ( ideal  id,
const ring  r 
)

index of generator with leading term in ground ring (if any); otherwise -1

Definition at line 80 of file simpleideals.cc.

81{
82 id_Test(id, r);
83 const int N = IDELEMS(id) - 1;
84 const poly * m = id->m + N;
85
86 for (int k = N; k >= 0; --k, --m)
87 {
88 const poly p = *m;
89 if (p!=NULL)
90 if (p_LmIsConstantComp(p, r) == TRUE)
91 return k;
92 }
93
94 return -1;
95}
const CanonicalForm CFMap CFMap & N
Definition cfEzgcd.cc:56
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition p_polys.h:1007

◆ id_Power()

ideal id_Power ( ideal  given,
int  exp,
const ring  r 
)

Definition at line 1415 of file simpleideals.cc.

1416{
1418 poly p1;
1419 int i;
1420
1421 if (idIs0(given)) return idInit(1,1);
1422 temp = id_Copy(given,r);
1424 i = binom(IDELEMS(temp)+exp-1,exp);
1425 result = idInit(i,1);
1426 result->nrows = 0;
1427//Print("ideal contains %d elements\n",i);
1428 p1=p_One(r);
1430 p_Delete(&p1,r);
1431 id_Delete(&temp,r);
1432 result->nrows = 1;
1435 return result;
1436}
gmp_float exp(const gmp_float &a)
static void id_NextPotence(ideal given, ideal result, int begin, int end, int deg, int restdeg, poly ap, const ring r)
ideal id_Copy(ideal h1, const ring r)
copy an ideal
void id_DelEquals(ideal id, const ring r)
ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i

◆ id_QHomWeight()

intvec * id_QHomWeight ( ideal  id,
const ring  r 
)

Definition at line 1887 of file simpleideals.cc.

1888{
1889 poly head, tail;
1890 int k;
1891 int in=IDELEMS(id)-1, ready=0, all=0,
1892 coldim=rVar(r), rowmax=2*coldim;
1893 if (in<0) return NULL;
1894 intvec *imat=new intvec(rowmax+1,coldim,0);
1895
1896 do
1897 {
1898 head = id->m[in--];
1899 if (head!=NULL)
1900 {
1901 tail = pNext(head);
1902 while (tail!=NULL)
1903 {
1904 all++;
1905 for (k=1;k<=coldim;k++)
1906 IMATELEM(*imat,all,k) = p_GetExpDiff(head,tail,k,r);
1907 if (all==rowmax)
1908 {
1909 ivTriangIntern(imat, ready, all);
1910 if (ready==coldim)
1911 {
1912 delete imat;
1913 return NULL;
1914 }
1915 }
1916 pIter(tail);
1917 }
1918 }
1919 } while (in>=0);
1920 if (all>ready)
1921 {
1922 ivTriangIntern(imat, ready, all);
1923 if (ready==coldim)
1924 {
1925 delete imat;
1926 return NULL;
1927 }
1928 }
1929 intvec *result = ivSolveKern(imat, ready);
1930 delete imat;
1931 return result;
1932}
CanonicalForm head(const CanonicalForm &f)
void ivTriangIntern(intvec *imat, int &ready, int &all)
Definition intvec.cc:404
intvec * ivSolveKern(intvec *imat, int dimtr)
Definition intvec.cc:442
#define IMATELEM(M, I, J)
Definition intvec.h:85
static long p_GetExpDiff(poly p1, poly p2, int i, ring r)
Definition p_polys.h:636

◆ id_RankFreeModule() [1/2]

long id_RankFreeModule ( ideal  m,
ring  lmRing,
ring  tailRing 
)

return the maximal component number found in any polynomial in s

Definition at line 974 of file simpleideals.cc.

975{
976 long j = 0;
977
978 if (rRing_has_Comp(tailRing) && rRing_has_Comp(lmRing))
979 {
980 poly *p=s->m;
981 for (unsigned int l=IDELEMS(s); l > 0; --l, ++p)
982 if (*p != NULL)
983 {
984 pp_Test(*p, lmRing, tailRing);
985 const long k = p_MaxComp(*p, lmRing, tailRing);
986 if (k>j) j = k;
987 }
988 }
989
990 return j; // return -1;
991}
const CanonicalForm int s
Definition facAbsFact.cc:51
#define rRing_has_Comp(r)
Definition monomials.h:266
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163

◆ id_RankFreeModule() [2/2]

static long id_RankFreeModule ( ideal  m,
ring  r 
)
inlinestatic

Definition at line 109 of file simpleideals.h.

110{return id_RankFreeModule(m, r, r);}
long id_RankFreeModule(ideal m, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s

◆ id_ResizeModule()

ideal id_ResizeModule ( ideal  mod,
int  rows,
int  cols,
const ring  R 
)

Definition at line 1642 of file simpleideals.cc.

1643{
1644 // columns?
1645 if (cols!=IDELEMS(mod))
1646 {
1647 for(int i=IDELEMS(mod)-1;i>=cols;i--) p_Delete(&mod->m[i],R);
1648 pEnlargeSet(&(mod->m),IDELEMS(mod),cols-IDELEMS(mod));
1649 IDELEMS(mod)=cols;
1650 }
1651 // rows?
1652 if (rows<mod->rank)
1653 {
1654 for(int i=IDELEMS(mod)-1;i>=0;i--)
1655 {
1656 if (mod->m[i]!=NULL)
1657 {
1658 while((mod->m[i]!=NULL) && (p_GetComp(mod->m[i],R)>rows))
1659 mod->m[i]=p_LmDeleteAndNext(mod->m[i],R);
1660 poly p=mod->m[i];
1661 while(pNext(p)!=NULL)
1662 {
1663 if (p_GetComp(pNext(p),R)>rows)
1665 else
1666 pIter(p);
1667 }
1668 }
1669 }
1670 }
1671 mod->rank=rows;
1672 return mod;
1673}
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition p_polys.h:756

◆ id_ShallowDelete()

void id_ShallowDelete ( ideal h,
ring  r 
)

Shallowdeletes an ideal/matrix.

Definition at line 177 of file simpleideals.cc.

178{
179 id_Test(*h, r);
180
181 if (*h == NULL)
182 return;
183
184 int j,elems;
185 elems=j=(*h)->nrows*(*h)->ncols;
186 if (j>0)
187 {
188 assume( (*h)->m != NULL );
189 do
190 {
191 p_ShallowDelete(&((*h)->m[--j]), r);
192 }
193 while (j>0);
194 omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems);
195 }
197 *h=NULL;
198}
void p_ShallowDelete(poly *p, const ring r)

◆ id_Shift()

void id_Shift ( ideal  M,
int  s,
const ring  r 
)

Definition at line 2165 of file simpleideals.cc.

2166{
2167// id_Test( M, r );
2168
2169// assume( s >= 0 ); // negative is also possible // TODO: verify input ideal in such a case!?
2170
2171 for(int i=IDELEMS(M)-1; i>=0;i--)
2172 p_Shift(&(M->m[i]),s,r);
2173
2174 M->rank += s;
2175
2176// id_Test( M, r );
2177}
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition p_polys.cc:4775

◆ id_SimpleAdd()

ideal id_SimpleAdd ( ideal  h1,
ideal  h2,
const ring  r 
)

concat the lists h1 and h2 without zeros

Definition at line 789 of file simpleideals.cc.

790{
791 id_Test(h1, R);
792 id_Test(h2, R);
793
794 if ( idIs0(h1) )
795 {
797 if (res->rank<h1->rank) res->rank=h1->rank;
798 return res;
799 }
800 if ( idIs0(h2) )
801 {
803 if (res->rank<h2->rank) res->rank=h2->rank;
804 return res;
805 }
806
807 int j = IDELEMS(h1)-1;
808 while ((j >= 0) && (h1->m[j] == NULL)) j--;
809
810 int i = IDELEMS(h2)-1;
811 while ((i >= 0) && (h2->m[i] == NULL)) i--;
812
813 const int r = si_max(h1->rank, h2->rank);
814
815 ideal result = idInit(i+j+2,r);
816
817 int l;
818
819 for (l=j; l>=0; l--)
820 result->m[l] = p_Copy(h1->m[l],R);
821
822 j = i+j+1;
823 for (l=i; l>=0; l--, j--)
824 result->m[j] = p_Copy(h2->m[l],R);
825
826 return result;
827}

◆ id_Sort()

intvec * id_Sort ( const ideal  id,
const BOOLEAN  nolex,
const ring  r 
)

sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE

Definition at line 694 of file simpleideals.cc.

695{
696 id_Test(id, r);
697
698 intvec * result = new intvec(IDELEMS(id));
699 int i, j, actpos=0, newpos;
702
703 for (i=0;i<IDELEMS(id);i++)
704 {
705 if (id->m[i]!=NULL)
706 {
707 notFound = TRUE;
708 newpos = actpos / 2;
709 diff = (actpos+1) / 2;
710 diff = (diff+1) / 2;
711 lastcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r);
712 if (lastcomp<0)
713 {
714 newpos -= diff;
715 }
716 else if (lastcomp>0)
717 {
718 newpos += diff;
719 }
720 else
721 {
722 notFound = FALSE;
723 }
724 //while ((newpos>=0) && (newpos<actpos) && (notFound))
725 while (notFound && (newpos>=0) && (newpos<actpos))
726 {
727 newcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r);
728 olddiff = diff;
729 if (diff>1)
730 {
731 diff = (diff+1) / 2;
732 if ((newcomp==1)
733 && (actpos-newpos>1)
734 && (diff>1)
735 && (newpos+diff>=actpos))
736 {
737 diff = actpos-newpos-1;
738 }
739 else if ((newcomp==-1)
740 && (diff>1)
741 && (newpos<diff))
742 {
743 diff = newpos;
744 }
745 }
746 if (newcomp<0)
747 {
748 if ((olddiff==1) && (lastcomp>0))
749 notFound = FALSE;
750 else
751 newpos -= diff;
752 }
753 else if (newcomp>0)
754 {
755 if ((olddiff==1) && (lastcomp<0))
756 {
757 notFound = FALSE;
758 newpos++;
759 }
760 else
761 {
762 newpos += diff;
763 }
764 }
765 else
766 {
767 notFound = FALSE;
768 }
770 if (diff==0) notFound=FALSE; /*hs*/
771 }
772 if (newpos<0) newpos = 0;
773 if (newpos>actpos) newpos = actpos;
774 while ((newpos<actpos) && (p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r)==0))
775 newpos++;
776 for (j=actpos;j>newpos;j--)
777 {
778 (*result)[j] = (*result)[j-1];
779 }
780 (*result)[newpos] = i;
781 actpos++;
782 }
783 }
784 for (j=0;j<actpos;j++) (*result)[j]++;
785 return result;
786}
static int p_Comp_RevLex(poly a, poly b, BOOLEAN nolex, const ring R)
for idSort: compare a and b revlex inclusive module comp.

◆ id_Subst()

ideal id_Subst ( ideal  id,
int  n,
poly  e,
const ring  r 
)

Definition at line 1679 of file simpleideals.cc.

1680{
1681 int k=MATROWS((matrix)id)*MATCOLS((matrix)id);
1683
1684 res->rank = id->rank;
1685 for(k--;k>=0;k--)
1686 {
1687 res->m[k]=p_Subst(id->m[k],n,e,r);
1688 id->m[k]=NULL;
1689 }
1690 id_Delete(&id,r);
1691 return res;
1692}
poly * m
Definition matpol.h:18
poly p_Subst(poly p, int n, poly e, const ring r)
Definition p_polys.cc:3999

◆ id_Transp()

ideal id_Transp ( ideal  a,
const ring  rRing 
)

transpose a module

Definition at line 1983 of file simpleideals.cc.

1984{
1985 int r = a->rank, c = IDELEMS(a);
1986 ideal b = idInit(r,c);
1987
1988 int i;
1989 for (i=c; i>0; i--)
1990 {
1991 poly p=a->m[i-1];
1992 while(p!=NULL)
1993 {
1994 poly h=p_Head(p, rRing);
1995 int co=__p_GetComp(h, rRing)-1;
1996 p_SetComp(h, i, rRing);
1997 p_Setm(h, rRing);
1998 h->next=b->m[co];
1999 b->m[co]=h;
2000 pIter(p);
2001 }
2002 }
2003 for (i=IDELEMS(b)-1; i>=0; i--)
2004 {
2005 poly p=b->m[i];
2006 if(p!=NULL)
2007 {
2008 b->m[i]=p_SortMerge(p,rRing,TRUE);
2009 }
2010 }
2011 return b;
2012}
static poly p_SortMerge(poly p, const ring r, BOOLEAN revert=FALSE)
Definition p_polys.h:1244

◆ id_Vec2Ideal()

ideal id_Vec2Ideal ( poly  vec,
const ring  R 
)

Definition at line 1498 of file simpleideals.cc.

1499{
1500 ideal result=idInit(1,1);
1502 p_Vec2Polys(vec, &(result->m), &(IDELEMS(result)),R);
1503 return result;
1504}
fq_nmod_poly_t * vec
Definition facHensel.cc:108
#define omFreeBinAddr(addr)
void p_Vec2Polys(poly v, poly **p, int *len, const ring r)
Definition p_polys.cc:3665

◆ idElem()

int idElem ( const ideal  F)
inlinestatic

number of non-zero polys in F

Definition at line 69 of file simpleideals.h.

70{
71 int i=0;
72 for(int j=IDELEMS(F)-1;j>=0;j--)
73 {
74 if ((F->m)[j]!=NULL) i++;
75 }
76 return i;
77}

◆ idGetNextChoise()

void idGetNextChoise ( int  r,
int  end,
BOOLEAN endch,
int choise 
)

Definition at line 1136 of file simpleideals.cc.

1137{
1138 int i = r-1,j;
1139 while ((i >= 0) && (choise[i] == end))
1140 {
1141 i--;
1142 end--;
1143 }
1144 if (i == -1)
1145 *endch = TRUE;
1146 else
1147 {
1148 choise[i]++;
1149 for (j=i+1; j<r; j++)
1150 {
1151 choise[j] = choise[i]+j-i;
1152 }
1153 *endch = FALSE;
1154 }
1155}

◆ idGetNumberOfChoise()

int idGetNumberOfChoise ( int  t,
int  d,
int  begin,
int  end,
int choise 
)

Definition at line 1162 of file simpleideals.cc.

1163{
1164 int * localchoise,i,result=0;
1165 BOOLEAN b=FALSE;
1166
1167 if (d<=1) return 1;
1168 localchoise=(int*)omAlloc((d-1)*sizeof(int));
1169 idInitChoise(d-1,begin,end,&b,localchoise);
1170 while (!b)
1171 {
1172 result++;
1173 i = 0;
1174 while ((i<t) && (localchoise[i]==choise[i])) i++;
1175 if (i>=t)
1176 {
1177 i = t+1;
1178 while ((i<d) && (localchoise[i-1]==choise[i])) i++;
1179 if (i>=d)
1180 {
1181 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
1182 return result;
1183 }
1184 }
1185 idGetNextChoise(d-1,end,&b,localchoise);
1186 }
1187 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
1188 return 0;
1189}
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)

◆ idInit()

ideal idInit ( int  idsize,
int  rank 
)

creates an ideal / module

creates an ideal / module

Definition at line 35 of file simpleideals.cc.

36{
37 assume( idsize >= 0 && rank >= 0 );
38
40
41 IDELEMS(hh) = idsize; // ncols
42 hh->nrows = 1; // ideal/module!
43
44 hh->rank = rank; // ideal: 1, module: >= 0!
45
46 if (idsize>0)
47 hh->m = (poly *)omAlloc0(idsize*sizeof(poly));
48 else
49 hh->m = NULL;
50
51 return hh;
52}
#define omAllocBin(bin)

◆ idInitChoise()

void idInitChoise ( int  r,
int  beg,
int  end,
BOOLEAN endch,
int choise 
)

Definition at line 1114 of file simpleideals.cc.

1115{
1116 /*returns the first choise of r numbers between beg and end*/
1117 int i;
1118 for (i=0; i<r; i++)
1119 {
1120 choise[i] = 0;
1121 }
1122 if (r <= end-beg+1)
1123 for (i=0; i<r; i++)
1124 {
1125 choise[i] = beg+i;
1126 }
1127 if (r > end-beg+1)
1128 *endch = TRUE;
1129 else
1130 *endch = FALSE;
1131}

◆ idIs0()

BOOLEAN idIs0 ( ideal  h)

returns true if h is the zero ideal

Definition at line 959 of file simpleideals.cc.

960{
961 assume (h != NULL); // will fail :(
962// if (h == NULL) return TRUE;
963
964 if (h->m!=NULL)
965 {
966 for( int i = IDELEMS(h)-1; i >= 0; i-- )
967 if(h->m[i] != NULL)
968 return FALSE;
969 }
970 return TRUE;
971}

◆ idShow()

void idShow ( const ideal  id,
const ring  lmRing,
const ring  tailRing,
const int  debugPrint = 0 
)

Definition at line 57 of file simpleideals.cc.

58{
59 assume( debugPrint >= 0 );
60
61 if( id == NULL )
62 PrintS("(NULL)");
63 else
64 {
65 Print("Module of rank %ld,real rank %ld and %d generators.\n",
66 id->rank,id_RankFreeModule(id, lmRing, tailRing),IDELEMS(id));
67
68 int j = (id->ncols*id->nrows) - 1;
69 while ((j > 0) && (id->m[j]==NULL)) j--;
70 for (int i = 0; i <= j; i++)
71 {
72 Print("generator %d: ",i); p_wrp(id->m[i], lmRing, tailRing);PrintLn();
73 }
74 }
75}
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
void PrintLn()
Definition reporter.cc:310

◆ idSkipZeroes()

void idSkipZeroes ( ideal  ide)

gives an ideal/module the minimal possible size

Definition at line 201 of file simpleideals.cc.

202{
203 assume (ide != NULL);
204
205 int k;
206 int j = -1;
207 int idelems=IDELEMS(ide);
209
210 for (k=0; k<idelems; k++)
211 {
212 if (ide->m[k] != NULL)
213 {
214 j++;
215 if (change)
216 {
217 ide->m[j] = ide->m[k];
218 ide->m[k] = NULL;
219 }
220 }
221 else
222 {
223 change=TRUE;
224 }
225 }
226 if (change)
227 {
228 if (j == -1)
229 j = 0;
230 j++;
231 pEnlargeSet(&(ide->m),idelems,j-idelems);
232 IDELEMS(ide) = j;
233 }
234}

◆ idSkipZeroes0()

int idSkipZeroes0 ( ideal  ide)

Definition at line 236 of file simpleideals.cc.

237{
238 assume (ide != NULL);
239
240 int k;
241 int j = -1;
242 int idelems=IDELEMS(ide);
243
244 k=0;
245 while((k<idelems)&&(ide->m[k] != NULL)) k++;
246 if (k==idelems) return idelems;
247 // now: k: pos of first NULL entry
248 j=k; k=k+1;
249 for (; k<idelems; k++)
250 {
251 if (ide->m[k] != NULL)
252 {
253 ide->m[j] = ide->m[k];
254 ide->m[k] = NULL;
255 j++;
256 }
257 }
258 if (j<=1) return 1;
259 return j;
260}

Variable Documentation

◆ sip_sideal_bin

EXTERN_VAR omBin sip_sideal_bin

Definition at line 54 of file simpleideals.h.